
 Design Pattern Framework™ 4.5

 Page 1 of 80

Gang of Four

Software Design Patterns

Companion document to

Design Pattern Framework™ 4.5

by

Data & Object Factory, LLC
www.dofactory.com

Copyright © Data & Object Factory, LLC
All rights reserved

http://www.dofactory.com/

 Design Pattern Framework™ 4.5

Copyright © Data & Object Factory, LLC. All rights reserved. Page 2 of 80

1. Index

1. Index ... 2
2. Introduction .. 3
3. The Gang of Four patterns .. 4
4. Abstract Factory .. 5
5. Builder ... 10
6. Factory Method ... 13
7. Prototype ... 18
8. Singleton ... 21
9. Adapter .. 25
10. Bridge .. 28
11. Composite ... 31
12. Decorator ... 34
13. Facade .. 37
14. Flyweigth ... 40
15. Proxy ... 43
16. Chain of Responsibility .. 46
17. Command .. 50
18. Interpreter .. 52
19. Iterator ... 56
20. Mediator .. 59
21. Memento ... 62
22. Observer .. 64
23. State .. 67
24. Strategy ... 70
25. Template Method ... 73
26. Visitor .. 77

 Design Pattern Framework™ 4.5

Copyright © Data & Object Factory, LLC. All rights reserved. Page 3 of 80

2. Introduction

Design patterns are solutions to software design problems you find

again and again in real-world application development. Patterns are

about design and interaction of objects, as well as providing a

communication platform concerning elegant, reusable solutions to

commonly encountered programming challenges.

The Gang of Four (GoF) patterns are generally considered the foundation for all other

patterns. A total of 23 GoF patterns exist. They are categorized in three groups:

Creational, Structural, and Behavioral. Here you will find information on each of these

patterns including source code examples in C# or VB (depending on the Edition you

purchased). When discussing a pattern the source code is referenced by project name.

While reading this guide we suggest that you have the DoFactory.GangOfFour solution

open.

Source code to these patterns is provided in 3 forms: structural, real-world, and .NET

optimized. Structural code uses type names as defined in the pattern definition and UML

diagrams. Real-world code provides real-world programming situations where you may

use the patterns. .NET optimized code demonstrates design patterns that exploit built-in

.NET features, such as, attributes, generics, reflection, object initialization, and lambda

expressions. This document provides for each pattern a section that explains when and

where the pattern is typically used, as well as a section that explains where Microsoft

has used the pattern in their own .NET Framework.

There are a few cases in the .NET optimized code, particularly when reflection or

serialization are involved, where the .NET solution may be elegant, but it may not

necessarily be the most effective solution to the problem. When this is the case we

mention it in this document. When applying patterns in your own projects, it is best to

keep an open mind and, when in doubt, run some simple performance tests.

With this out of the way, you’re now ready to explore the 23 Gang of Four design

patterns.

 Design Pattern Framework™ 4.5

Copyright © Data & Object Factory, LLC. All rights reserved. Page 4 of 80

3. The Gang of Four patterns

Below is a list of the 23 Gang of Four patterns:

Creational Patterns

Abstract Factory Creates an instance of several families of classes

Builder Separates object construction from its representation

Factory Method Creates an instance of several derived classes

Prototype A fully initialized instance to be copied or cloned

Singleton A class of which only a single instance can exist

Structural Patterns

Adapter Match interfaces of different classes

Bridge Separates an object’s interface from its implementation

Composite A tree structure of simple and composite objects

Decorator Add responsibilities to objects dynamically

Façade A single class that represents an entire subsystem

Flyweight A fine-grained instance used for efficient sharing

Proxy An object representing another object

Behavioral Patterns

Chain of Resp. A way of passing a request between a chain of objects

Command Encapsulate a command request as an object

Interpreter A way to include language elements in a program

Iterator Sequentially access the elements of a collection

Mediator Defines simplified communication between classes

Memento Capture and restore and object’s internal state

Observer A way of notifying change to a number of classes

State Alter an object’s behavior when its state changes

Strategy Encapsulates an algorithm inside a class

Template Method Defer the exact steps of an algorithm to a subclass

Visitor Defines a new operation to a class without change

 Design Pattern Framework™ 4.5

Copyright © Data & Object Factory, LLC. All rights reserved. Page 5 of 80

4. Abstract Factory

Definition

Provide an interface for creating families of related or dependent objects

without specifying their concrete classes.

Frequency of use: high

UML Class Diagram

Participants

 Design Pattern Framework™ 4.5

Copyright © Data & Object Factory, LLC. All rights reserved. Page 6 of 80

The classes and/or objects participating in this pattern are:

 AbstractFactory (ContinentFactory)

o declares an interface for operations that create abstract products

 ConcreteFactory (AfricaFactory, AmericaFactory)

o implements the operations to create concrete product objects

 AbstractProduct (Herbivore, Carnivore)

o declares an interface for a type of product object

 Product (Wildebeest, Lion, Bison, Wolf)

o defines a product object to be created by the corresponding concrete

factory implements the AbstractProduct interface

 Client (AnimalWorld)

o uses interfaces declared by AbstractFactory and AbstractProduct classes

Structural sample code

The structural code demonstrates the Abstract Factory pattern creating parallel

hierarchies of objects. Object creation has been abstracted and there is no need for

hard-coded class names in the client code.

Code in project: DoFactory.GangOfFour.Abstract.Structural

Real-world sample code

The real-world code demonstrates the creation of different animal worlds for a computer

game using different factories. Although the animals created by the Continent factories

are different, the interactions among the animals remain the same.

Code in project: DoFactory.GangOfFour.Abstract.RealWorld

.NET optimized sample code

The .NET optimized code demonstrates the same functionality as the real-world

example but uses more modern, built-in .NET features. For example, abstract classes

 Design Pattern Framework™ 4.5

Copyright © Data & Object Factory, LLC. All rights reserved. Page 7 of 80

have been replaced by interfaces. There is no need for abstract classes because they

have no implementation code. Continents are represented as enumerations. The

AnimalWorld constructor dynamically creates the desired factory using the Continent

enumerated value.

Code in project: DoFactory.GangOfFour.Abstract.NetOptimized

Abstract Factory: when and where you would use it

The Abstract Factory pattern provides a class that creates objects that are related by a

common theme. The classic example is that of a GUI component factory which creates

UI controls for different windowing systems, such as, Windows, Motif, or MacOS. In

case you’re familiar with Java Swing, it represents a great example of the use of the

Abstract Factory pattern to build UI interfaces that are independent of their hosting

platform. From a design pattern perspective, Java Swing succeeded, but applications

built on this platform are limited in their interactivity and responsiveness compared to

native Windows or native Motif applications.

Over time the meaning of the Abstract Factory pattern has evolved relative to the original

GoF definition. Today, when developers talk about the Abstract Factory pattern they not

only mean the creation of a ‘family of related or dependent objects' but also a simpler

notion which is the creation of individual object instances.

Perhaps you are wondering why you would want to create objects using another class

(called Abstract Factory) rather than calling constructors directly. Here are some

reasons:

Constructors are limited in their control over the overall creation process. If your

application needs more control then use a Factory instead. Possible scenarios where

this may be the case is when the creation of objects involves object caching, sharing or

re-using of objects, and applications that need to maintain object and type counts.

 Design Pattern Framework™ 4.5

Copyright © Data & Object Factory, LLC. All rights reserved. Page 8 of 80

Additionally, there are times when the client does not know exactly what type to

construct. It is easier to code against a base type or an interface and then let a factory

make this decision for the client (based on parameters or other context-based

information). The provider-specific ADO.NET objects (i.e. DbConnection, DbCommand,

DbDataAdapter, etc.) are a good example of this.

Constructors don’t communicate their intention very well because they must be named

after their class (or Sub New in VB). Having numerous overloaded constructors may

make it hard for the client developer to decide which constructor to use. Replacing

constructors with a Factory that has intention-revealing creation methods may be

preferred. Here is an example of 4 overloaded constructors. These first examples show

that it is not always clear which one to use.

// C#

public Vehicle (int passengers)

public Vehicle (int passengers, int horsePower)

public Vehicle (int wheels, bool trailer)

public Vehicle (string type)

' VB

public Sub New (Byval passengers As Integer)

public Sub New (Byval passengers As Integer, _

 Byval horsePower As Integer)

public Sub New (Byval wheels As Integer wheels, _

 Byval trailer As Boolean)

public Sub New (Byval type As String)

The Factory pattern makes the code far more expressive.

// C#

public Vehicle CreateCar (int passengers)

public Vehicle CreateSuv (int passengers, int horsePower)

public Vehicle CreateTruck (int wheels, bool trailer)

public Vehicle CreateBoat ()

public Vehicle CreateBike ()

' VB

public Function CreateCar (Byval passengers As Integer) As Vehicle

public Function CreateSuv (Byval passengers As Integer, _

 Byval horsePower As Integer) As Vehicle

public Function CreateTruck (Byval wheels As Integer, _

 Byval trailer As Boolean) As Vehicle

public Function CreateBoat () As Vehicle

public Function CreateBike () As Vehicle

 Design Pattern Framework™ 4.5

Copyright © Data & Object Factory, LLC. All rights reserved. Page 9 of 80

Abstract Factory in the .NET Framework

A search through the .NET Framework libraries for the word ‘Factory’ reveals many

classes that are implementations of the Factory design pattern. ADO.NET, for example,

includes two Abstract Factory classes that offer provider independent data access. They

are: DbProviderFactory and DbProviderFactories. The DbProviderFactory creates the

‘true’ (i.e. database specific) classes you need; in the case of SQL Server they are

SqlClientConnection, SqlClientCommand, and SqlClientDataAdapter. Each managed

provider (such as, SqlClient, OleDb, ODBC, or Oracle) has its own DbProviderFactory

class. DbProviderFactory objects, in turn, are created by the DbProviderFactories class

(note: the name is plural), which itself is a factory. In fact, it is a factory of factories -- it

manufactures different factories, one for each provider.

When Microsoft talks about Abstract Factories they mean types that expose factory

methods as virtual or abstract instance functions and that return an abstract class or

interface. Below is an example from .NET:

// C#

public abstract class StreamFactory

{

 public abstract Stream CreateStream();

}

' VB

Public MustInherit Class StreamFactory

 Public MustOverride Function CreateStream() As Stream

End Class

In this scenario your factory inherits from StreamFactory and is used to dynamically

select the actual Stream type being created:

// C#

public class MemoryStreamFactory : StreamFactory

{

 ...

}

' VB

Public Class MemoryStreamFactory

 Inherits StreamFactory

 ...

End Class

 Design Pattern Framework™ 4.5

Copyright © Data & Object Factory, LLC. All rights reserved. Page 10 of 80

The naming convention in .NET for the Factory pattern is to append the word ‘Factory’ to

the name of the type that is being created. For example, a class that manufactures

Widget objects would be named WidgetFactory.

5. Builder

Definition

Separate the construction of a complex object from its representation so

that the same construction process can create different representations.

Frequency of use: medium low

UML Class Diagram

Participants

The classes and/or objects participating in this pattern are:

 Builder (VehicleBuilder)

o specifies an abstract interface for creating parts of a Product object

 ConcreteBuilder (MotorCycleBuilder, CarBuilder, ScooterBuilder)

o constructs and assembles parts of the product by implementing the

Builder interface

 Design Pattern Framework™ 4.5

Copyright © Data & Object Factory, LLC. All rights reserved. Page 11 of 80

o defines and keeps track of the representation it creates

o provides an interface for retrieving the product

 Director (Shop)

o constructs an object using the Builder interface

 Product (Vehicle)

o represents the complex object under construction. ConcreteBuilder builds

the product's internal representation and defines the process by which it's

assembled

o includes classes that define the constituent parts, including interfaces for

assembling the parts into the final result

Structural sample code

The structural code demonstrates the Builder pattern in which complex objects are

created in a step-by-step fashion. The construction process can create different object

representations and provides a high level of control over the assembly of the objects.

Code in project: DoFactory.GangOfFour.Builder.Structural

Real-world sample code

The real-world code demonstrates a Builder pattern in which different vehicles are

assembled in a step-by-step fashion. The Shop uses VehicleBuilders to construct a

variety of Vehicles in a series of sequential steps.

Code in project: DoFactory.GangOfFour.Builder.RealWorld

.NET optimized sample code

The .NET optimized code demonstrates the same functionality as the real-world

example but uses more modern, built-in .NET features. An enumeration for PartType

and VehicleType was added. The ConcreteBuilders have their own constructors, which

invoke their base class constructors with the correct VehicleType. Vehicle uses a

 Design Pattern Framework™ 4.5

Copyright © Data & Object Factory, LLC. All rights reserved. Page 12 of 80

generic Dictionary for increased type safety. The Vehicle.Show() method uses a this[]

indexer rather than the parts[] array.

Code in project: DoFactory.GangOfFour.Builder.NetOptimized

Builder: when and where you would use it

The Builder design pattern is a creational pattern that allows the client to construct a

complex object by specifying the type and content only. Construction details are hidden

from the client entirely. The most common motivation for using Builder is to simplify

client code that creates complex objects. The client can still direct the steps taken by

the Builder, without knowing how the actual work is accomplished. Builders frequently

encapsulate construction of Composite objects (another design pattern) because the

procedures involved are often repetitive and complex.

A scenario where the Builder can be helpful is when building a code generator.

Suppose you’re writing an application that writes stored procedures for different

database vendors (SQL Server, Oracle, or Db2). The actual output is quite different but

the different steps of creating the separate procedures that implement the CRUD

statements (Create, Read, Update, and Delete) are similar.

Builder is a creational pattern just like the Factory patterns. However, Builder gives you

more control in that each step in the construction process can be customized; Factory

patterns create objects in a single step.

Builder in the .NET Framework

The Builder design pattern is used infrequently, but you do find it in the .NET libraries.

Two classes, VBCodeProvider and CSharpCodeProvider, create Builder classes through

their CreateGenerator methods (as an aside, both CodeProvider classes are factory

classes). The CreateGenerator methods return an ICodeGenerator interface through

which the generation of source code can be controlled. Visual Studio .NET uses these

code generating Builder classes internally.

 Design Pattern Framework™ 4.5

Copyright © Data & Object Factory, LLC. All rights reserved. Page 13 of 80

6. Factory Method

Definition

Define an interface for creating an object, but let subclasses decide which

class to instantiate. Factory Method lets a class defer instantiation to

subclasses.

Frequency of use: high

UML Class Diagram

Participants

The classes and/or objects participating in this pattern are:

 Product (Page)

o defines the interface of objects the factory method creates

 ConcreteProduct (SkillsPage, EducationPage, ExperiencePage)

o implements the Product interface

 Creator (Document)

o declares the factory method, which returns an object of type Product.

Creator may also define a default implementation of the factory method

that returns a default ConcreteProduct object.

o may call the factory method to create a Product object.

 ConcreteCreator (Report, Resume)

 Design Pattern Framework™ 4.5

Copyright © Data & Object Factory, LLC. All rights reserved. Page 14 of 80

o overrides the factory method to return an instance of a ConcreteProduct.

Structural sample code

The structural code demonstrates the Factory method offering great flexibility in creating

different objects. The Abstract class may provide a default object, but each subclass can

instantiate an extended version of the object.

Code in project: DoFactory.GangOfFour.Factory.Structural

Real-world sample code

The real-world code demonstrates the Factory method offering flexibility in creating

different documents. The derived Document classes Report and Resume instantiate

extended versions of the Document class. Here, the Factory Method is called in the

constructor of the Document base class.

Code in project: DoFactory.GangOfFour.Factory.RealWorld

.NET optimized sample code

The .NET optimized code demonstrates the same functionality as the real-world

example but uses more modern, built-in .NET features. Both the fixed size Document

array and the Pages ArrayList have been replaced with type-safe generic List<T>

collections (List(Of T) collections in VB). .NET language features in this example include

automatic properties and collection initialization which significantly reduce the number of

lines of code.

Code in project: DoFactory.GangOfFour.Factory.NetOptimized

 Design Pattern Framework™ 4.5

Copyright © Data & Object Factory, LLC. All rights reserved. Page 15 of 80

Factory Method: when and where you would use it

Class constructors exist so that clients can create instances of a class. However, there

are situations, where the client does not, or should not, know which one of several

candidate classes to instantiate. The Factory Method allows the client to use an

interface for creating an object while still retaining control over which class to instantiate.

The key objective of the Factory Method is extensibility. Factory Methods are frequently

used in applications that manage, maintain, or manipulate collections of objects that are

different but at the same time have many characteristics in common.

A document management system, for example, is more extensible by referencing the

documents as a collection of IDocuments. These documents may be Text files, Word

documents, Visio diagrams, or legal papers. They are different but each one has an

author, a title, a type, a size, a location, a page count, etc. When a new document type is

introduced it simply implements the IDocument interface and it will work like the rest of

the documents. To support this new document type the Factory Method may or may not

have to be adjusted (depending on how it was implemented, i.e. with or without

parameters). The example below would need adjustment.

// C#

public class DocumentFactory

{

 // Factory method with parameter

 public IDocument CreateDocument(DocumentType docType)

 {

 IDocument document = null;

 switch(docType)

 {

 case DocumentType.Word:

 document = new WordDocument();

 break;

 case DocumentType.Excel:

 document = new ExcelDocument();

 break;

 case DocumentType.Visio:

 document = new VisioDocument();

 break;

 }

 return document;

 }

}

 Design Pattern Framework™ 4.5

Copyright © Data & Object Factory, LLC. All rights reserved. Page 16 of 80

' VB

Public Class DocumentFactory

 ' Factory method with parameter

 Public Function CreateDocument(ByVal docType As DocumentType) _

 As IDocument

 Dim document As IDocument = Nothing

 Select Case docType

 Case DocumentType.Word

 document = New WordDocument()

 Case DocumentType.Excel

 document = New ExcelDocument()

 Case DocumentType.Visio

 document = New VisioDocument()

 End Select

 Return document

 End Function

End Class

Factory Methods are frequently used in ‘manager’ type components, such as, document

managers, account managers, permission managers, custom control managers, etc.

In your own projects you probably have methods that return new objects. However, they

may or may not be Factory methods. How to you know when a method is a Factory

Method? The rules are:

 the method creates a new object

 the method returns an abstract class or interface

 the abstract class or interface is implemented by several classes

Factory Method in .NET Framework

The Factory Method is frequently used in .NET. An example is the System.Convert

class which exposes many static methods that, given an instance of a type, returns

another new type. For example, Convert.ToBoolean accepts a string and returns a

boolean which value depends on the incoming string value (“true” or “false”). Likewise

the Parse method on many built-in value types (Int32, Double, etc.) is an example of the

same pattern.

// C#

string myString = "true";

 Design Pattern Framework™ 4.5

Copyright © Data & Object Factory, LLC. All rights reserved. Page 17 of 80

bool myBool = Convert.ToBoolean(myString);

' VB

Dim myString As String = "true"

Dim myBool As Boolean = Convert.ToBoolean(myString)

In .NET the Factory Method is typically implemented as a static method that creates an

instance of a particular type determined at compile time. In other words, these methods

don’t return base classes or interface types of which the true type is only known at

runtime. This is exactly where Abstract Factory and Factory Method differ: Abstract

Factory methods are virtual or abstract and return abstract classes or interfaces. Factory

Methods are abstract and return object types.

Two static factory method examples are File.Open and Activator.Create

// C#

public class File

{

 public static FileStream Open(string path, FileMode mode)

 {

 ...

 }

}

' VB

Public Class File

 Public Shared Function Open(ByVal path As String, _

 ByVal mode As FileMode) As FileStream

 ...

 End Function

End Class

// C#

public static class Activator

{

 public static object Create(Type type)

 {

 ...

 }

}

' VB

Public Class Activator

 Public Shared Function Create(ByVal type As Type) As Object

 ...

 End Function

End Class

 Design Pattern Framework™ 4.5

Copyright © Data & Object Factory, LLC. All rights reserved. Page 18 of 80

7. Prototype

Definition

Specify the kind of objects to create using a prototypical instance, and

create new objects by copying this prototype.

Frequency of use: medium

UML Class Diagram

Participants

The classes and/or objects participating in this pattern are:

 Prototype (ColorPrototype)

o declares an interace for cloning itself

 ConcretePrototype (Color)

o implements an operation for cloning itself

 Client (ColorManager)

o creates a new object by asking a prototype to clone itself

 Design Pattern Framework™ 4.5

Copyright © Data & Object Factory, LLC. All rights reserved. Page 19 of 80

Structural sample code

The structural code demonstrates the Prototype pattern in which new objects are

created by copying pre-existing objects (prototypes) of the same class.

Code in project: DoFactory.GangOfFour.Prototype.Structural

Real-world sample code

The real-world code demonstrates the Prototype pattern in which new Color objects are

created by copying pre-existing, user-defined Colors of the same type.

Code in project: DoFactory.GangOfFour.Prototype.NetOptimized

.NET optimized sample code

The .NET optimized code demonstrates the same functionality as the real-world

example but uses more modern, built-in .NET features. The abstract classes have been

replaced by interfaces because the abstract classes contain no implementation code.

RGB values range between 0-255, therefore the int has been replaced with a smaller

byte data type. The colors collection in the ColorManager class is implemented with a

type-safe generic Dictionary class. A Dictionary is an array of key/value pairs. In this

implementation the key is of type string (i.e. the color name) and the value is of type

Color (the Color object instance).

ICloneable is a built-in .NET prototype interface. ICloneable requires that the class

hierarchy be serializable. Here the Serializable attribute is used to do just that (as an

aside: if a class has 'event' members then these must be decorated with the

NonSerialized attribute). Alternatively, reflection could have been used to query each

member in the ICloneable class (tip: always check for performance when implementing

cloning many objects through serialization or reflection).

Code in project: DoFactory.GangOfFour.Prototype.NetOptimized

 Design Pattern Framework™ 4.5

Copyright © Data & Object Factory, LLC. All rights reserved. Page 20 of 80

Prototype: when and where you would use it

Like other creational patterns (Builder, Abstract Factory, and Factory Method), the

Prototype design pattern hides object creation from the client. However, instead of

creating a non-initialized object, it returns a new object that is initialized with values it

copied from a prototype - or sample - object. The Prototype design pattern is only

occasionally used in business applications. You'll find it used more often in specialized

types of apps, such as, computer graphics, CAD (Computer Assisted Drawing), GIS

(Geographic Information Systems), and computer games.

The Prototype design pattern creates clones of pre-existing sample objects. The best

way to implement this in .NET is to use the built-in ICloneable interface on the objects

that are used as prototypes. ICloneable has a method named Clone that returns an

object that is a copy, or clone, of the original object.

When implementing the Clone method you need to be aware there are two types of

clone operations: deep copy and shallow copy. Shallow copy only copies properties of

the object itself but no object references. Deep copy copies the prototype object and all

the objects references (which can be several levels deep).

Shallow copy is easy to implement because the Object base class has a

MemberwiseClone method that returns a shallow copy of the object. Creating a deep

copy can be more complicated because some objects are not readily copied (such as

Threads, Database connections, etc.). Also, you will need to watch out for circular

references.

Prototype in the .NET Framework

.NET support for the Prototype pattern can be found in object serialization scenarios.

Let’s say you have a prototypical object that has been serialized to persistent storage,

such as disk or a database. Having this serialized representation as a prototype allows

you to create many copies of the original object (the prototype).

 Design Pattern Framework™ 4.5

Copyright © Data & Object Factory, LLC. All rights reserved. Page 21 of 80

8. Singleton

Definition

Ensure a class has only one instance and provide a global point of

access to it.

Frequency of use: medium high

UML Class Diagram

Participants

The classes and/or objects participating in this pattern are:

 Singleton (LoadBalancer)

o defines an Instance operation that lets clients access its unique instance.

Instance is a class operation.

o responsible for creating and maintaining its own unique instance.

Structural sample code

The structural code demonstrates the Singleton pattern which assures only a single

instance (the singleton) of the class can be created.

Code in project: DoFactory.GangOfFour.Singleton.Structural

 Design Pattern Framework™ 4.5

Copyright © Data & Object Factory, LLC. All rights reserved. Page 22 of 80

Real-world sample code

The real-world code demonstrates the Singleton pattern as a LoadBalancing object.

Only a single instance (the singleton) of the class should ever exist because servers

may dynamically come on-line or off-line. Each request for a server must go through this

singleton object because it has ‘authoritative’ knowledge about the state of the (web)

farm.

Code in project: DoFactory.GangOfFour.Singleton.RealWorld

.NET optimized sample code

The .NET optimized code demonstrates the same code as above but uses more

modern, built-in .NET features. Here an elegant .NET specific solution is offered. The

Singleton pattern simply uses a private constructor and a static readonly instance

variable that is lazily initialized. Thread safety is guaranteed by the compiler. In addition,

the list of servers is implemented with a generic List<T> (List(Of T) in VB).

Code in project: DoFactory.GangOfFour.Singleton.NetOptimized

Singleton: when and where you would use it

Most objects are responsible for their own work and operate on self- contained data and

references that are within their given area of concern. However, sometimes you have

objects that have additional responsibilities that are more global in scope, such as,

managing limited resources or monitoring the overall state of the system.

The responsibilities of these objects often require that there be just one instance of the

class. Examples include cached database records or a scheduling service which emails

work-flow items that require attention. Having more than one database or scheduling

service would risk duplication and may result in all kinds of problems.

 Design Pattern Framework™ 4.5

Copyright © Data & Object Factory, LLC. All rights reserved. Page 23 of 80

Other areas in the application rely on these special objects and they need a way to find

them. This is where the Singleton design pattern comes in. The intent of the Singleton

pattern is to ensure that a class has only one instance and to provide a global point of

access to this instance. Using the Singleton pattern you centralize authority over a

particular resource in a single object.

Other reasons quoted for using Singletons are to improve performance. A common

scenario is when you have a stateless object that is created over and over again. A

Singleton removes the need to constantly create and destroy objects. Be careful though

as the Singleton may not be the best solution in this scenario; an alternative would be to

make your methods static and this would have the same effect. Tip: Singletons are easy

to implement which has resulted in a tendency to overuse Singletons. It is best to

carefully consider your options when applying Singletons.

Global variables are frowned upon as a bad coding practice, but most practitioners

acknowledge the need for a few globals. Singletons can hold one or more global

variables and this can be really handy. In fact, this is how Singletons are frequently

used – they are an ideal place to keep and maintain globally accessible variables. An

example follows:

// C#

sealed public class Global

{

 static readonly Global instance = new Global();

 string _connectionString;

 int _loginCount = 0;

 // private constructor

 private Global()

 {

 // Do nothing

 }

 public static Global Instance

 {

 get{ return instance; }

 }

 public string ConnectionString

 {

 get{ return _connectionString; }

 set{ _connectionString = value; }

 }

 public int LoginCount

 Design Pattern Framework™ 4.5

Copyright © Data & Object Factory, LLC. All rights reserved. Page 24 of 80

 {

 get{ return _loginCount; }

 set{ _loginCount = value; }

 }

}

// VB

NotInheritable Public Class Global

 Shared ReadOnly _instance As Global = New Global()

 _connectionString As String

 _loginCount As Integer = 0

 ' private constructor

 Private Sub New()

 ' Do nothing

 End Sub

 Public Shared ReadOnly Property Instance() As Global

 Get

 Return _instance

 End Get

 End Property

 Public Property ConnectionString() As String

 Get

 Return _connectionString

 End Get

 Set

 _connectionString = Value

 End Set

 End Property

 Public Property LoginCount() As Integer

 Get

 Return _loginCount

 End Get

 Set

 _loginCount = Value

 End Set

 End Property

End Class

Singleton in the .NET Framework

An example where the .NET Framework uses the Singleton pattern is in the area of

.NET Remoting when launching server-activated objects. One of the activation modes of

server objects is called Singleton and their behavior is in line with the GoF pattern

definition, that is, there is never more than one instance at any one time. If an instance

exists then all client requests will be serviced by this instance – if one does not exist,

 Design Pattern Framework™ 4.5

Copyright © Data & Object Factory, LLC. All rights reserved. Page 25 of 80

then a new instance is created and all subsequent client requests will be serviced by this

new instance.

9. Adapter

Definition

Convert the interface of a class into another interface clients expect.

Adapter lets classes work together that couldn't otherwise because of

incompatible interfaces.

Frequency of use: medium high

UML Class Diagram

Participants

The classes and/or objects participating in this pattern are:

 Target (ChemicalCompound)

o defines the domain-specific interface that Client uses.

 Adapter (Compound)

o adapts the interface Adaptee to the Target interface.

 Design Pattern Framework™ 4.5

Copyright © Data & Object Factory, LLC. All rights reserved. Page 26 of 80

 Adaptee (ChemicalDatabank)

o defines an existing interface that needs adapting.

 Client (AdapterApp)

o collaborates with objects conforming to the Target interface.

Structural sample code

The structural code demonstrates the Adapter pattern which maps the interface of one

class onto another so that they can work together. These incompatible classes may

come from different libraries or frameworks.

Code in project: DoFactory.GangOfFour.Adapter.Structural

Real-world sample code

The real-world code demonstrates the use of a legacy chemical databank. Chemical

compound objects access the databank through an Adapter interface.

Code in project: DoFactory.GangOfFour.Adapter.RealWorld

.NET optimized sample code

The .NET optimized code demonstrates the same code as above but uses more

modern, built-in .NET features. To improve encapsulation Compound class variables

were changed from protected to private and several corresponding set/get properties

were added. This will allow the derived class to access these variables via properties

rather than directly. Finally, two enumerations (Chemical and State) were added for

increased type safety.

Code in project: DoFactory.GangOfFour.Adapter.NetOptimized

 Design Pattern Framework™ 4.5

Copyright © Data & Object Factory, LLC. All rights reserved. Page 27 of 80

Adapter: when and where you would use it

.NET developers write classes that expose methods that are called by clients. Most of

the time they will be able to control the interfaces, but there are situations, for example,

when using 3rd party libraries, where they may not be able to do so. The 3rd party library

performs the desired services but the interface methods and property names are

different from what the client expects. This is a scenario where you would use the

Adapter pattern.

The Adapter provides an interface the client expects using the services of a class with a

different interface. Adapters are commonly used in programming environments where

new components or new applications need to be integrated and work together with

existing programming components.

Adapters are also useful in refactoring scenarios. Suppose that you have two classes

that perform similar functions but have different interfaces. The client uses both classes,

but the code would be far cleaner and simpler to understand if they would share the

same interface. You cannot alter the interface, but you can shield the differences by

using an Adapter which allows the client to communicate via a common interface. The

Adapter handles the mapping between the shared interface and the original interfaces.

Adapter in the .NET Framework

The .NET Framework uses the Adapter pattern extensively by providing the ability for

.NET clients to communicate with legacy COM components. There are significant

differences between COM and .NET. For example, in error handling, COM components

typically return an HRESULT to indicate success or failure, whereas in .NET exceptions

are thrown in case of an error. The .NET Framework handles these and other

differences with so-called Runtime Callable Wrappers (RCW) which is nothing more than

an implementation of the Adapter pattern. The Adapter adapts the COM interface to

what .NET clients expect.

 Design Pattern Framework™ 4.5

Copyright © Data & Object Factory, LLC. All rights reserved. Page 28 of 80

10. Bridge

Definition

Decouple an abstraction from its implementation so that the two can vary

independently.

Frequency of use: medium

UML Class Diagram

Participants

The classes and/or objects participating in this pattern are:

 Abstraction (BusinessObject)

o defines the abstraction's interface.

o maintains a reference to an object of type Implementor.

 RefinedAbstraction (CustomersBusinessObject)

o extends the interface defined by Abstraction.

 Implementor (DataObject)

 Design Pattern Framework™ 4.5

Copyright © Data & Object Factory, LLC. All rights reserved. Page 29 of 80

o defines the interface for implementation classes. This interface doesn't

have to correspond exactly to Abstraction's interface; in fact the two

interfaces can be quite different. Typically the Implementation interface

provides only primitive operations, and Abstraction defines higher-level

operations based on these primitives.

 ConcreteImplementor (CustomersDataObject)

o implements the Implementor interface and defines its concrete

implementation.

Structural sample code

The structural code demonstrates the Bridge pattern which separates (decouples) the

interface from its implementation. The implementation can evolve without changing

clients which use the abstraction of the object.

Code in project: DoFactory.GangOfFour.Bridge.Structural

Real-world sample code

The real-world code demonstrates the Bridge pattern in which a BusinessObject

abstraction is decoupled from the implementation in DataObject. The DataObject

implementations can evolve dynamically without changing any clients.

Code in project: DoFactory.GangOfFour.Bridge.RealWorld

.NET optimized sample code

The .NET optimized code demonstrates the same code as above but uses more

modern, built-in .NET features. The DataObject abstract class has been replaced by an

interface because DataObject contains no implementation code. Furthermore, to

increase type-safety the customer list was implemented as a generic List of strings:

List<string> in C# and List(Of String) in VB.

Code in project: DoFactory.GangOfFour.Bridge.NetOptimized

 Design Pattern Framework™ 4.5

Copyright © Data & Object Factory, LLC. All rights reserved. Page 30 of 80

Bridge: when and where you would use it

The Bridge pattern is used for decoupling an abstraction from its implementation so that

the two can vary independently. Bridge is a high-level architectural patterns and its main

goal is through abstraction to help .NET developers write better code. A Bridge pattern

is created by moving a set of abstract operations to an interface so that both the client

and the service can vary independently. The abstraction decouples the client, the

interface, and the implementation.

A classic example of the Bridge pattern is when coding against device drivers. A driver is

an object that independently operates a computer system or external hardware device. It

is important to realize that the client application is the abstraction. Interestingly enough,

each driver instance is also an implementation of the Adapter pattern. The overall

system, the application together with the drivers, represents an instance of a Bridge.

Bridge in the .NET Framework

As mentioned, Bridge is a high-level architectural pattern and as such is not directly

exposed by the .NET libraries themselves. However, developers use this pattern all the

time. When building an application that uses a driver to communicate with a database,

say, through ODBC, you’re using the Bridge pattern. ODBC is a standard API for

executing SQL statements and represents the interface in the Bridge design pattern –

classes that implement the API are ODBC drivers. Applications that rely on these drivers

are abstractions that work with any database (SQL Server, Oracle, DB2, etc.) for which

an ODBC driver is available. The ODBC architecture decouples an abstraction from its

implementation so that the two can vary independently; this is the Bridge pattern in

action.

 Design Pattern Framework™ 4.5

Copyright © Data & Object Factory, LLC. All rights reserved. Page 31 of 80

11. Composite

Definition

Compose objects into tree structures to represent part-whole hierarchies.

Composite lets clients treat individual objects and compositions of objects

uniformly.

Frequency of use: medium high

UML Class Diagram

Participants

The classes and/or objects participating in this pattern are:

 Component (DrawingElement)

o declares the interface for objects in the composition.

o implements default behavior for the interface common to all classes, as

appropriate.

 Design Pattern Framework™ 4.5

Copyright © Data & Object Factory, LLC. All rights reserved. Page 32 of 80

o declares an interface for accessing and managing its child components.

o (optional) defines an interface for accessing a component's parent in the

recursive structure, and implements it if that's appropriate.

 Leaf (PrimitiveElement)

o represents leaf objects in the composition. A leaf has no children.

o defines behavior for primitive objects in the composition.

 Composite (CompositeElement)

o defines behavior for components having children.

o stores child components.

o implements child-related operations in the Component interface.

 Client (CompositeApp)

o manipulates objects in the composition through the Component interface.

Structural sample code

The structural code demonstrates the Composite pattern which allows the creation of a

tree structure in which individual nodes are accessed uniformly whether they are leaf

nodes or branch (composite) nodes.

Code in project: DoFactory.GangOfFour.Composite.Structural

Real-world sample code

The real-world code demonstrates the Composite pattern used in building a graphical

tree structure made up of primitive nodes (lines, circles, etc) and composite nodes

(groups of drawing elements that make up more complex elements).

Code in project: DoFactory.GangOfFour.Composite.RealWorld

.NET optimized sample code

The .NET optimized code demonstrates the same code as above but uses more

modern, built-in .NET features. The composite pattern is a great candidate for generics

and you will find these used throughout this example. A generic TreeNode<T> was

 Design Pattern Framework™ 4.5

Copyright © Data & Object Factory, LLC. All rights reserved. Page 33 of 80

created (TreeNode(Of T) in VB). This is an open type which has the ability to accept any

type parameter. The TreeNode has a generic constraint in which type T must implement

the IComparable<T> interface (IComparable(Of T) in VB). The class named Shape

does implement this generic interface so that comparisons can be made between shape

objects. This facilitates the process of adding and removing shapes from the list of tree

nodes. This code demonstrates much of the power that generics offer to .NET

developers.

Code in project: DoFactory.GangOfFour.Composite.NetOptimized

Composite: when and where you would use it

The Composite design pattern is an in-memory data structures with groups of objects,

each of which contain individual items or other groups. A tree control is a great example

of a Composite pattern. The nodes of the tree either contain an individual object (leaf

node) or a group of objects (a subtree of nodes). All nodes in the Composite pattern

share a common interface which supports individual items as well as groups of items.

This common interface greatly facilitates the design and construction of recursive

algorithms that iterate over each object in the Composite collection.

Fundamentally, the Composite pattern is a collection that you use to build trees and

directed graphs. It is used like any other collection, such as, arrays, list, stacks,

dictionaries, etc.

Composite in the .NET Framework

The Composite pattern is widely used in .NET. Examples are the Control class of which

there are two versions - one for Windows apps (in the System.Windows.Forms

namespace) and the other for ASP.NET apps (in the System.Web.UI namespace). The

Control class supports operations that apply to all Controls and their descendants in their

respective environments as well as operations that deal with child controls (for example

the Controls property which returns a collection of child controls).

 Design Pattern Framework™ 4.5

Copyright © Data & Object Factory, LLC. All rights reserved. Page 34 of 80

The built-in .NET TreeNode class is another example of the Composite design pattern in

the .NET framework. WPF also has many built-in controls that are Composites.

12. Decorator

Definition

Attach additional responsibilities to an object dynamically. Decorators

provide a flexible alternative to subclassing for extending functionality.

Frequency of use: medium

UML Class Diagram

Participants

The classes and/or objects participating in this pattern are:

 Design Pattern Framework™ 4.5

Copyright © Data & Object Factory, LLC. All rights reserved. Page 35 of 80

 Component (LibraryItem)

o defines the interface for objects that can have responsibilities added to

them dynamically.

 ConcreteComponent (Book, Video)

o defines an object to which additional responsibilities can be attached.

 Decorator (Decorator)

o maintains a reference to a Component object and defines an interface

that conforms to Component's interface.

 ConcreteDecorator (Borrowable)

o adds responsibilities to the component.

Structural sample code

The structural code demonstrates the Decorator pattern which dynamically adds extra

functionality to an existing object.

Code in project: DoFactory.GangOfFour.Decorator.Structural

Real-world sample code

The real-world code demonstrates the Decorator pattern in which 'borrowable'

functionality is added to existing library items (books and videos).

Code in project: DoFactory.GangOfFour.Decorator.RealWorld

.NET optimized sample code

The .NET optimized code demonstrates an example of the Decorator design pattern that

uses generics; the collection of borrowers is represents in a type-safe collection of type

List<string> (List(Of String) in VB).

Code in project: DoFactory.GangOfFour.Decorator.NetOptimized

 Design Pattern Framework™ 4.5

Copyright © Data & Object Factory, LLC. All rights reserved. Page 36 of 80

Decorator: when and where you would use it

The intent of the Decorator design pattern is to dynamically extend an object’s behavior.

This ability to dynamically attach new behavior to objects is done by a Decorator class

that ‘wraps itself’ around the original class.

The Decorator pattern combines polymorphism with delegation. It is polymorphic with

the original class so that clients can invoke it just like the original class. In most cases,

method calls are delegated to the original class and then the results are acted upon, or

decorated, with additional functionality. Decoration is a flexible technique because it

takes place at runtime, as opposed to inheritance which take place at compile time.

Decorator in the .NET Framework

Examples of the Decorator in the .NET Framework include a set of classes that are

designed around the Stream class. The Stream class is an abstract class that reads or

writes a sequence of bytes from an IO device (disk, sockets, memory, etc.). The

BufferedStream class is a Decorator that wraps the Stream class and reads and writes

large chunks of bytes for better performance. Similarly, the CryptoStream class wraps a

Stream and encrypts and decrypts a stream of bytes on the fly.

Both BufferedStream and CryptoStream expose the same interface as Stream with

methods such as Read, Write, Seek, Flush and others. Clients won’t know the difference

with the original Stream. Decorator classes usually have a constructor with an argument

that represents the class they intent to decorate: for example:

new BufferedStream (Stream stream).

As an aside, the .NET extension methods are a close cousin to this pattern as they also

offer the ability to add functionality to an existing type (even if the type is sealed).

Similarly, attached properties and attached events which are used in WPF, also allow

extending classes at runtime without changing the classes themselves.

 Design Pattern Framework™ 4.5

Copyright © Data & Object Factory, LLC. All rights reserved. Page 37 of 80

13. Facade

Definition

Provide a unified interface to a set of interfaces in a subsystem. Façade

defines a higher-level interface that makes the subsystem easier to use.

Frequency of use: high

UML Class Diagram

Participants

The classes and/or objects participating in this pattern are:

 Facade (MortgageApplication)

o knows which subsystem classes are responsible for a request.

o delegates client requests to appropriate subsystem objects.

 Subsystem classes (Bank, Credit, Loan)

o implement subsystem functionality.

o handle work assigned by the Facade object.

o have no knowledge of the facade and keep no reference to it.

 Design Pattern Framework™ 4.5

Copyright © Data & Object Factory, LLC. All rights reserved. Page 38 of 80

Structural sample code

The structural code demonstrates the Facade pattern which provides a simplified and

uniform interface to a large subsystem of classes.

Code in project: DoFactory.GangOfFour.Facade.Structural

Real-world sample code

The real-world code demonstrates the Facade pattern as a MortgageApplication object

which provides a simplified interface to a large subsystem of classes measuring the

creditworthiness of an applicant.

Code in project: DoFactory.GangOfFour.Facade.RealWorld

.NET optimized sample code

This code is essentially the same as the real-world example. The only difference is the

use of .NET automatic properties and object initializer on the Customer class.

Code in project: DoFactory.GangOfFour.Facade.NetOptimized

Façade: when and where you would use it

A Façade is a class that provides an interface (a set of methods and properties) that

makes it easier for clients to use classes and objects in a complex subsystem. The

Façade pattern is a simple pattern and may seem trivial. Yet, it is one of the more

important and most widely used patterns in multi-tiered systems.

The intent of the Façade is to provide a high-level architectural interface that makes a

subsystem or toolkit easy to use for the client. In a 3-tier application the presentation

layer is the client. Calls into the business (or domain) layer take place via a well-defined

 Design Pattern Framework™ 4.5

Copyright © Data & Object Factory, LLC. All rights reserved. Page 39 of 80

service layer. This service layer, or façade, hides the complexity of the business objects

and their interactions.

Another area where you use Façade patterns is in refactoring efforts. If you’re dealing

with a confusing or messy set of legacy classes that you don't want the client

programmer to see, you can hide it behind a Façade. The Façade exposes only what is

necessary for the client and presents an easy to use and well-organized interface.

Façades are often combined with other design patterns. Facades themselves are

frequently implemented as singleton abstract factories. However, you can get the same

effect by using static methods on the Façade.

Facade in the .NET Framework

In the .NET Framework you’ll find numerous implementations of the Façade design

pattern. It is used in scenarios where there is a need to present a simplified view over

more complex set of types. To discuss this properly we need to distinguish high-level

architectural Facades from lower level component type facades. Microsoft has

introduced its own terminology for the lower level façade types in component-oriented

designs; they call these aggregate components. In reality these are pure façades as

they represent a higher level view of multiple lower level types and APIs with the

objective to support common programming scenarios.

An example of an aggregate component is System.Diagnostics.EventLog. It exposes a

simple API to the client, whose only concern is creating the EventLog instance, setting

and getting some properties, and writing events to the server’s event log. Complex

operations, including opening and closing read-and-write handles are totally hidden from

the client.

Other aggregate component examples include: System.Web.Mail.SmtpMail to send mail

messages, System.IO.SerialPort which is a powerful serial port class,

System.Messaging.MessageQueue which provides access to a queue on a Message

Queue server, and System.Net.WebClient which provides a high-level interface for

sending and retrieving data from a network resources identified by a general URI.

 Design Pattern Framework™ 4.5

Copyright © Data & Object Factory, LLC. All rights reserved. Page 40 of 80

The decision to include Façades in a component library can be tricky and requires

careful consideration. This is what the Microsoft developers working on the .NET

Framework libraries are dealing with all the time. The objective of the .NET libraries is to

provide a high degree of control to the programmer whereas the Façade’s goal is to

simplify and limit what the .NET developer can see. Facades may reduce the

expressiveness of the API, but at the same time provide real ‘work-horse’ type classes

that are easy to understand and simple to use.

14. Flyweigth

Definition

Use sharing to support large numbers of fine-grained objects efficiently.

Frequency of use: low

UML Class Diagram

 Design Pattern Framework™ 4.5

Copyright © Data & Object Factory, LLC. All rights reserved. Page 41 of 80

Participants

The classes and/or objects participating in this pattern are:

 Flyweight (Character)

o declares an interface through which flyweights can receive and act on

extrinsic state.

 ConcreteFlyweight (CharacterA, CharacterB, ..., CharacterZ)

o implements the Flyweight interface and adds storage for intrinsic state, if

any. A ConcreteFlyweight object must be sharable. Any state it stores

must be intrinsic, that is, it must be independent of the ConcreteFlyweight

object's context.

 UnsharedConcreteFlyweight (not used)

o not all Flyweight subclasses need to be shared. The Flyweight interface

enables sharing, but it doesn't enforce it. It is common for

UnsharedConcreteFlyweight objects to have ConcreteFlyweight objects

as children at some level in the flyweight object structure (as the Row and

Column classes have).

 FlyweightFactory (CharacterFactory)

o creates and manages flyweight objects

o ensures that flyweight are shared properly. When a client requests a

flyweight, the FlyweightFactory objects supplies an existing instance or

creates one, if none exists.

 Client (FlyweightApp)

o maintains a reference to flyweight(s).

o computes or stores the extrinsic state of flyweight(s).

Structural sample code

The structural code demonstrates the Flyweight pattern in which a relatively small

number of objects is shared many times by different clients.

Code in project: DoFactory.GangOfFour.Flyweight.Structural

 Design Pattern Framework™ 4.5

Copyright © Data & Object Factory, LLC. All rights reserved. Page 42 of 80

Real-world sample code

The real-world code demonstrates the Flyweight pattern in which a relatively small

number of Character objects is shared many times by a document that has potentially

many characters.

Code in project: DoFactory.GangOfFour.Flyweight.RealWorld

.NET optimized sample code

The Flyweight Pattern is rarely used in business application development. However, it is

valuable as a memory management technique when many objects are created with

similar state. Internally, .NET uses Flyweights for strings that are declared at compile

time and have the same sequence of characters. The stateless flyweights refer to the

same memory location that holds the immutable string.

Flyweights are usually combined with the Factory pattern as demonstrated in the .NET

Optimized code sample. The .NET optimized code uses a generic Dictionary collection

to hold and quickly access Flyweight Character objects in memory.

Code in project: DoFactory.GangOfFour.Flyweight.NetOptimized

Flyweight: when and where you would use it

The intent of the Flyweight design pattern is to share large numbers of fine-grained

objects efficiently. Shared flyweight objects are immutable, that is, they cannot be

changed as they represent the characteristics that are shared with other objects.

Examples include, characters and line-styles in a word processor or digit receivers in a

public switched telephone network application. You will find flyweights mostly in utility

type applications (word processors, graphics programs, network apps). They are rarely

used in data-driven business type applications.

 Design Pattern Framework™ 4.5

Copyright © Data & Object Factory, LLC. All rights reserved. Page 43 of 80

Flyweight in the .NET Framework

As mentioned above, Flyweights are used internally in the .NET Framework as a string

management technique to minimize memory usage for immutable strings.

15. Proxy

Definition

Provide a surrogate or placeholder for another object to control access

to it.

Frequency of use: medium high

UML Class Diagram

Participants

The classes and/or objects participating in this pattern are:

 Proxy (MathProxy)

 Design Pattern Framework™ 4.5

Copyright © Data & Object Factory, LLC. All rights reserved. Page 44 of 80

o maintains a reference that lets the proxy access the real subject. Proxy

may refer to a Subject if the RealSubject and Subject interfaces are the

same.

o provides an interface identical to Subject's so that a proxy can be

substituted for for the real subject.

o controls access to the real subject and may be responsible for creating

and deleting it.

o other responsibilites depend on the kind of proxy:

o remote proxies are responsible for encoding a request and its arguments

and for sending the encoded request to the real subject in a different

address space.

o virtual proxies may cache additional information about the real subject so

that they can postpone accessing it. For example, the ImageProxy from

the Motivation caches the real images's extent.

o protection proxies check that the caller has the access permissions

required to perform a request.

 Subject (IMath)

o defines the common interface for RealSubject and Proxy so that a Proxy

can be used anywhere a RealSubject is expected.

 RealSubject (Math)

o defines the real object that the proxy represents.

Structural sample code

The structural code demonstrates the Proxy pattern which provides a representative

object (proxy) that controls access to another similar object.

Code in project: DoFactory.GangOfFour.Proxy.Structural

Real-world sample code

The real-world code demonstrates the Proxy pattern for a Math object represented by a

MathProxy object.

 Design Pattern Framework™ 4.5

Copyright © Data & Object Factory, LLC. All rights reserved. Page 45 of 80

Code in project: DoFactory.GangOfFour.Proxy.RealWorld

.NET optimized sample code

The .NET optimized code demonstrates the same code as above but uses more

modern, built-in .NET features. This code demonstrates the Remote Proxy pattern which

provides a representative object (i.e., a stand-in object) that controls access to another

object in a different AppDomain. In fact, the 'math' member variable in the MathProxy

object is the 'hidden' .NET proxy that represents the Math object in the MathDomain.

Code in project: DoFactory.GangOfFour.Proxy.NetOptimized

Proxy: when and where you would use it

In object-oriented languages objects do the work they advertise through their public

interface. Clients of these objects expect this work to be done quickly and efficiently.

However, there are situations where an object is severely constrained and cannot live up

to its responsibility. Typically this occurs when there is a dependency on a remote

resource (a call to another server for example) or when an object takes a long time to

load. In situations like these you apply the Proxy pattern and create a proxy object that

‘stands in’ for the original object. The Proxy forwards the request to a target object. The

interface of the Proxy object is the same as the original object and clients may not even

be aware they are dealing with a proxy rather than the real object.

The proxy pattern is meant to provide a surrogate or placeholder for another object to

control access to it. There are 3 different types of proxies:

 Remote proxies are responsible for encoding a request and for forwarding the

encoded request to a real object in a different address space (app domain,

process, or machine)

 Virtual proxies may cache additional information about a real object so that they

can postpone accessing it (this process is known by many names, such as, just-

in-time loading, on-demand loading, or lazy loading)

 Protection proxies check that the caller has the proper access permissions to

perform the request.

 Design Pattern Framework™ 4.5

Copyright © Data & Object Factory, LLC. All rights reserved. Page 46 of 80

Actually, there is another type, called Smart References. A Smart Reference is a proxy

for a pointer, but since there are few uses for pointers in .NET it is unlikely that you need

this proxy type.

Proxy in the .NET Framework

In .NET the Proxy pattern manifests itself in the Remoting infrastructure. In .NET

Remoting, whenever an object requires access to an object in a different address space

(app domain, process, or machine) a proxy is created that sends the request to the

remote object and any data it needs. As is common with proxies, the client is frequently

not even aware that a proxy is at work.

Clients of WCF services also rely heavily on auto-generated proxy objects.

16. Chain of Responsibility

Definition

Avoid coupling the sender of a request to its receiver by giving more than

one object a chance to handle the request. Chain the receiving objects

and pass the request along the chain until an object handles it.

Frequency of use: medium low

UML Class Diagram

 Design Pattern Framework™ 4.5

Copyright © Data & Object Factory, LLC. All rights reserved. Page 47 of 80

Participants

The classes and/or objects participating in this pattern are:

 Handler (Approver)

o defines an interface for handling the requests

o (optional) implements the successor link

 ConcreteHandler (Director, VicePresident, President)

o handles requests it is responsible for

o can access its successor

o if the ConcreteHandler can handle the request, it does so; otherwise it

forwards the request to its successor

 Client (ChainApp)

o initiates the request to a ConcreteHandler object on the chain

Structural sample code

The structural code demonstrates the Chain of Responsibility pattern in which several

linked objects (the Chain) are offered the opportunity to respond to a request or hand it

off to the object next in line.

Code in project: DoFactory.GangOfFour.Chain.Structural

 Design Pattern Framework™ 4.5

Copyright © Data & Object Factory, LLC. All rights reserved. Page 48 of 80

Real-world sample code

The real-world code demonstrates the Chain of Responsibility pattern in which several

linked managers and executives can respond to a purchase request or hand it off to a

superior. Each position has can have its own set of rules which orders they can approve.

Code in project: DoFactory.GangOfFour.Chain.RealWorld

.NET optimized sample code

The .NET optimized code demonstrates the same code as above but uses more

modern, built-in .NET features. The Successor settings are simplified by using

properties. Furthermore, this example uses an event driven model with events,

delegates, and custom event arguments. The delegates are implemented using

generics in which event handlers are type safe and not restricted to senders of type

object but rather to types that are appropriate for the event – in the sample code type

Approver (see, for example, the first argument in the DirectorRequest event handler).

The chain of responsibility pattern is frequently used in the Windows event model in

which a UI control can either handle an event (for example a mouse click) or let it fall

through to the next control in the event chain.

Code in project: DoFactory.GangOfFour.Chain.NetOptimized

Chain of Responsibility: when and where you would use it

One of the goals of object-oriented design is to keep objects loosely coupled by limiting

their dependencies and keeping the relationships between objects specific and minimal.

Loosely coupled objects have the advantage that they are easier to maintain and easier

to change compared to systems where there is tight coupling between objects (i.e. hard-

coded references to specific classes).

 Design Pattern Framework™ 4.5

Copyright © Data & Object Factory, LLC. All rights reserved. Page 49 of 80

The Chain of Responsibility design pattern offers an opportunity to build a collection of

loosely coupled objects by relieving a client from having to know which objects in a

collection can satisfy a request by arranging these objects in a chain. This pattern

requires a way to order the search for an object that can handle the request. This search

is usually modeled according to the specific needs of the application domain. Note that

the Chain-of-Responsibility pattern is rarely used in business application development.

Chain of Responsibility in the .NET Framework

In .NET you can identify a Chain of Responsibility in the Windows event model where

each UI control can decide to process an event or let it fall through to the next control in

the event chain.

Occasionally you may run into a Chain of Responsibility implementation in which a chain

of objects process a message between a sender and a receiver, in which each object

does some processing on the message as it travels through the chain from the sender to

the receiver. This is slightly different from the GoF definition in which just one object in a

chain decides to handle the request. The .NET Framework implements this ‘stepwise

chain pattern’ in .NET Remoting in which a message between a client and a server

passes through one or more so-called message sinks. Message sinks form a chain as

each sink has a reference to the next sink in the chain. Sinks implement the

IMessageSink interface and one of its members is the NextSink property.

 Design Pattern Framework™ 4.5

Copyright © Data & Object Factory, LLC. All rights reserved. Page 50 of 80

17. Command

Definition

Encapsulate a request as an object, thereby letting you parameterize

clients with different requests, queue or log requests, and support

undoable operations.

Frequency of use: medium high

UML Class Diagram

Participants

The classes and/or objects participating in this pattern are:

 Command (Command)

o declares an interface for executing an operation

 ConcreteCommand (CalculatorCommand)

o defines a binding between a Receiver object and an action

o implements Execute by invoking the corresponding operation(s) on

Receiver

 Client (CommandApp)

 Design Pattern Framework™ 4.5

Copyright © Data & Object Factory, LLC. All rights reserved. Page 51 of 80

o creates a ConcreteCommand object and sets its receiver

 Invoker (User)

o asks the command to carry out the request

 Receiver (Calculator)

o knows how to perform the operations associated with carrying out the

request.

Structural sample code

The structural code demonstrates the Command pattern which stores requests as

objects allowing clients to execute or playback the requests.

Code in project: DoFactory.GangOfFour.Command.Structural

Real-world sample code

The real-world code demonstrates the Command pattern used in a simple calculator with

unlimited number of undo's and redo's. Note that in C# the word 'operator' is a keyword.

Prefixing it with '@' allows using it as an identifier.

Code in project: DoFactory.GangOfFour.Command.RealWorld

.NET optimized sample code

The .NET optimized code demonstrates the same code as above but uses more

modern, built-in .NET features. In this example the abstract Command class has been

replaced by the ICommand interface because the abstract class had no implementation

code at all. In addition, the collection of commands in the User class is implemented as

a generic List<> of ICommand interface types (List(Of ICommand) in VB).

Code in project: DoFactory.GangOfFour.Command.NetOptimized

 Design Pattern Framework™ 4.5

Copyright © Data & Object Factory, LLC. All rights reserved. Page 52 of 80

Command: when and where you would use it

The Command design pattern encapsulates an action or a request as an object. The

classic usage of this pattern is a menu system where each command object represents

an action and an associated undo action. Menu actions include menu items such as File

| Open, File | Save, Edit | Copy, etc. each of which gets mapped to its own command

object.

All Commands implement the same interface, so they can be handled polymorphically.

Typically their interface includes methods such as Do and Undo (or Execute and Undo).

Areas where you find Command patterns are: menu command systems and in

applications that require undo functionality (word processors, and sometimes in business

applications that need database undo functionality).

Command in the .NET Framework

We don’t have access to the source code of Microsoft’s applications, but there is no

doubt that most, including Visual Studio .NET, use the Command pattern to support their

menus, toolbars, shortcuts, and associated undo functionality. We would have expected

that the Command pattern would be exposed in .NET as part of a unified WinForms

command routing architecture, but they are not.

Until several years ago the Command patterns was not generally used in the .NET

Framework, but when of WPF was introduced that changed. WPF natively supports

Commands in its Command System (and is used in our ‘Patterns in Action’ WPF

application).

18. Interpreter

Definition

Given a language, define a representation for its grammar along with an

interpreter that uses the representation to interpret sentences in the

 Design Pattern Framework™ 4.5

Copyright © Data & Object Factory, LLC. All rights reserved. Page 53 of 80

language..

Frequency of use: low

UML Class Diagram

Participants

The classes and/or objects participating in this pattern are:

 AbstractExpression (Expression)

o declares an interface for executing an operation

 TerminalExpression (ThousandExpression, HundredExpression,

TenExpression, OneExpression)

o implements an Interpret operation associated with terminal symbols in the

grammar.

o an instance is required for every terminal symbol in the sentence.

 NonterminalExpression (not used)

o one such class is required for every rule R ::= R1R2...Rn in the grammar

o maintains instance variables of type AbstractExpression for each of the

symbols R1 through Rn.

o implements an Interpret operation for nonterminal symbols in the

grammar. Interpret typically calls itself recursively on the variables

representing R1 through Rn.

 Design Pattern Framework™ 4.5

Copyright © Data & Object Factory, LLC. All rights reserved. Page 54 of 80

 Context (Context)

o contains information that is global to the interpreter

 Client (InterpreterApp)

o builds (or is given) an abstract syntax tree representing a particular

sentence in the language that the grammar defines. The abstract syntax

tree is assembled from instances of the NonterminalExpression and

TerminalExpression classes

o invokes the Interpret operation

Structural sample code

The structural code demonstrates the Interpreter patterns, which using a defined

grammer, provides the interpreter that processes parsed statements

Code in project: DoFactory.GangOfFour.Interpreter.Structural

Real-world sample code

The real-world code demonstrates the Interpreter pattern which is used to convert a

Roman numeral to a decimal.

Code in project: DoFactory.GangOfFour.Interpreter.RealWorld

.NET optimized sample code

The .NET optimized code demonstrates the same code as above but uses more

modern, built-in .NET features. Here the abstract classes have been replaced by

interfaces because the abstract classes have no implementation code. In addition, the

parse tree which holds the collection of expressions (ThousandExpression,

HundredExpression, etc) is implemented as a generic List of type Expression.

Code in project: DoFactory.GangOfFour.Interpreter.NetOptimized

 Design Pattern Framework™ 4.5

Copyright © Data & Object Factory, LLC. All rights reserved. Page 55 of 80

Interpreter: when and where you would use it

If your applications are complex and require advanced configuration you could offer a

scripting language which allows the end-user to manipulate your application through

simple scripting. The Interpreter design pattern solves this particular problem – that of

creating a scripting language that allows the end user to customize their solution.

However, if you really need this type of control it is today probably easier and faster to

use an existing command interpreter or expression evaluator tool out of the box.

Certain types of problems lend themselves to be characterized by a language. This

language describes the problem domain which should be well-understood and well-

defined. In addition, this language needs to be mapped to a grammar. Grammars are

usually hierarchical tree-like structures that step through multiple levels but end up with

terminal nodes (also called literals). This type of problem, expressed as a grammar, can

be implemented using the Interpreter design pattern. The well-known Towers of Hanoi

puzzle is an example of the type of problem that can be encoded by a simple grammar

and implemented using the Interpreter design pattern.

The Interpreter design pattern shares similarities with several other patterns. Just like

State and Strategy, it delegates processing to a set of dedicated classes. It also has

similarities with the Composite pattern; basically Interpreter is an enhancement of

Composite although it frequently requires more complex object groupings compared to

the Composite pattern.

Interpreter in the .NET Framework

We are not aware of the Interpreter pattern being used in the .NET Framework libraries.

 Design Pattern Framework™ 4.5

Copyright © Data & Object Factory, LLC. All rights reserved. Page 56 of 80

19. Iterator

Definition

Provide a way to access the elements of an aggregate object sequentially

without exposing its underlying representation..

Frequency of use: high

UML Class Diagram

Participants

The classes and/or objects participating in this pattern are:

 Iterator (AbstractIterator)

o defines an interface for accessing and traversing elements.

 ConcreteIterator (Iterator)

o implements the Iterator interface.

o keeps track of the current position in the traversal of the aggregate.

 Aggregate (AbstractCollection)

o defines an interface for creating an Iterator object

 Design Pattern Framework™ 4.5

Copyright © Data & Object Factory, LLC. All rights reserved. Page 57 of 80

 ConcreteAggregate (Collection)

o implements the Iterator creation interface to return an instance of the

proper ConcreteIterator

Structural sample code

The structural code demonstrates the Iterator pattern which provides for a way to

traverse (iterate) over a collection of items without detailing the underlying structure of

the collection.

Code in project: DoFactory.GangOfFour.Iterator.Structural

Real-world sample code

The real-world code demonstrates the Iterator pattern which is used to iterate over a

collection of items and skip a specific number of items each iteration.

Code in project: DoFactory.GangOfFour.Iterator.RealWorld

.NET optimized sample code

The .NET optimized code demonstrates the same code as above but uses more

modern, built-in .NET features. In this example the IEnumerable and IEnumerator

interfaces are implemented using .NET's built-in generic Iterator design pattern.

C# offers built-in iterator support with the yield return keyword which makes

implementing the IEnumerable and IEnumerator interfaces easier and faster (even when

iterating over trees and other more complex data structures). Three generic

IEnumerable<T> methods demonstrate the elegant manner in which you can code

iterators that loop front-to-back, back-to-front, or loop over a subset of items with a given

step size (FromToStep method).

VB does not support the ‘yield return’ keyword, but the .NET code sample demonstrates

the implementation of flexible generic iterator using the IEnumerator(Of T) interface. Two

 Design Pattern Framework™ 4.5

Copyright © Data & Object Factory, LLC. All rights reserved. Page 58 of 80

looping methods are demonstrated: While and For Each.

Code in project: DoFactory.GangOfFour.Iterator.NetOptimized

Iterator: when and where you would use it

A common programming task is to traverse and manipulate a collection of objects.

These collections may be stored as an array, a list, or perhaps something more

complex, such as a tree or graph structure. In addition, you may need to access the

items in the collection in a certain order, such as, front to back, back to front, depth first

(as in tree searches), skip even numbered objects, etc. The Iterator design pattern

solves this problem by separating the collection of objects from the traversal of these

objects by implementing a specialized iterator class.

Not only do you find the Iterator design pattern deep into the .NET libraries, it is one of

only two patterns that are part of the C# and VB language itself (the other is the

Observer design pattern). Both languages have a built-in construct that facilitates

iterating over collections: foreach in C# and For Each in VB.

// C#

string[] votes = new string[] { "Agree", "Disagree", "Don’t Know"};

foreach (string vote in votes)

{

 Console.WriteLine(vote);

}

' VB

Private votes As String() = _

 New String() {"Agree" "Disagree", "Don’t Know"}

For Each vote As String In votes

 Console.WriteLine(vote)

Next vote

The objects referenced in the ‘In’ expression must implement the IEnumerable interface,

so that the collection of objects can be traversed.

 Design Pattern Framework™ 4.5

Copyright © Data & Object Factory, LLC. All rights reserved. Page 59 of 80

Iterator in the .NET Framework

As mentioned above the Iterator pattern is not only part of the .NET Framework libraries,

it is baked into the language itself. The .NET libraries contain numerous classes that

implement the IEnumerable and IEnumerator interfaces, such as, Array, ArrayList,

AttributesCollection, BaseChannelObjectWithProperties, BaseCollection,

BindingsContext, as well as the generic counterparts of these classes.

.NET makes iteration even more fun and powerful with LINQ (language integrated query)

which essentially is a full-blown query language built on top of the generic

IEnumerable<T> and IEnumerator<T> iterator types.

20. Mediator

Definition

Define an object that encapsulates how a set of objects interact. Mediator

promotes loose coupling by keeping objects from referring to each other

explicitly, and it lets you vary their interaction independently.

Frequency of use: medium low

UML Class Diagram

 Design Pattern Framework™ 4.5

Copyright © Data & Object Factory, LLC. All rights reserved. Page 60 of 80

Participants

The classes and/or objects participating in this pattern are:

 Mediator (IChatroom)

o defines an interface for communicating with Colleague objects

 ConcreteMediator (Chatroom)

o implements cooperative behavior by coordinating Colleague objects

o knows and maintains its colleagues

 Colleague classes (Participant)

o each Colleague class knows its Mediator object

o each colleague communicates with its mediator whenever it would have

otherwise communicated with another colleague

Structural sample code

The structural code demonstrates the Mediator pattern facilitating loosely coupled

communication between different objects and object types. The mediator is a central hub

through which all interaction must take place.

Code in project: DoFactory.GangOfFour.Mediator.Structural

Real-world sample code

The real-world code demonstrates the Mediator pattern facilitating loosely coupled

communication between different Participants registering with a Chatroom. The

Chatroom is the central hub through which all communication takes place. At this point

only one-to-one communication is implemented in the Chatroom, but it would be trivial to

change this to a one-to-many communication system.

Code in project: DoFactory.GangOfFour.Mediator.RealWorld

.NET optimized sample code

The .NET optimized code demonstrates the same code as above but uses more

modern, built-in .NET features. Here the abstract classes have been replaced with

 Design Pattern Framework™ 4.5

Copyright © Data & Object Factory, LLC. All rights reserved. Page 61 of 80

interfaces because there is no implementation code. In addition, a generic Dictionary

collection is used to hold the Participant objects.

Code in project: DoFactory.GangOfFour.Mediator.NetOptimized

Mediator: when and where you would use it

The Mediator design pattern defines an object that provides central authority over a

group of objects by encapsulating how these objects interact. This model is useful for

scenarios where there is a need to manage complex conditions in which every object is

aware of every state change of other objects in the group.

The Mediator pattern is often used in the development of complex dialog boxes. Take for

example a dialog in which you enter options to make a flight reservation. A simple

Mediator rule would be: you must enter a valid departure date, a valid return date, the

return date must be after the departure date, a valid departure airport, a valid arrival

airport, a valid number of travelers, and only then the Search command button can be

activated.

Another area where Mediator is used is in complex configuration scenarios. Dell’s

website provides a good example. When selecting custom options for your computer,

the configurator (Mediator) keeps track of all your selections. Its main role is to

determine whether a particular combination of hardware components work together or

not. For example a particular graphics card may not work with a certain type of monitor.

The Mediator is the pattern that flags these kinds of incompatibilities.

Mediator in the .NET Framework

We are not aware of the Mediator being used in the .NET Framework libraries.

 Design Pattern Framework™ 4.5

Copyright © Data & Object Factory, LLC. All rights reserved. Page 62 of 80

21. Memento

Definition

Without violating encapsulation, capture and externalize an object's

internal state so that the object can be restored to this state later.

Frequency of use: low

UML Class Diagram

Participants

The classes and/or objects participating in this pattern are:

 Memento (Memento)

o stores internal state of the Originator object. The memento may store as

much or as little of the originator's internal state as necessary at its

originator's discretion.

o protect against access by objects of other than the originator. Mementos

have effectively two interfaces. Caretaker sees a narrow interface to the

Memento -- it can only pass the memento to the other objects. Originator,

in contrast, sees a wide interface, one that lets it access all the data

necessary to restore itself to its previous state. Ideally, only the originator

that produces the memento would be permitted to access the memento's

internal state.

 Originator (SalesProspect)

 Design Pattern Framework™ 4.5

Copyright © Data & Object Factory, LLC. All rights reserved. Page 63 of 80

o creates a memento containing a snapshot of its current internal state.

o uses the memento to restore its internal state

 Caretaker (Caretaker)

o is responsible for the memento's safekeeping

o never operates on or examines the contents of a memento.

Structural sample code

The structural code demonstrates the Memento pattern which temporary saves and

restores another object's internal state

Code in project: DoFactory.GangOfFour.Memento.Structural

Real-world sample code

The real-world code demonstrates the Memento pattern which temporarily saves and

then restores the SalesProspect's internal state

Code in project: DoFactory.GangOfFour.Memento.RealWorld

.NET optimized sample code

The .NET optimized code demonstrates the same code as above but uses more

modern, built-in .NET features. In this example the Memento is more general. It will take

any serializable object and save and restore it. The Originator class is decorated with the

Serializable attribute. Note that this approach is not necessarily the most efficient

because of the relatively expensive serialization and deserialization steps.

Code in project: DoFactory.GangOfFour.Memento.NetOptimized

Memento: when and where you would use it

The intent of the Memento pattern is to provide storage as well as restoration of an

object. The medium at which you store the object’s state depends on the required

 Design Pattern Framework™ 4.5

Copyright © Data & Object Factory, LLC. All rights reserved. Page 64 of 80

duration of persistence which could be a few seconds, a few days, or possibly years.

Storage options include memory (for example Session), a scratch file, or a database.

In a sense you can view a database as an implementation of the Memento design

pattern. However, the most common reason for using this pattern is to capture a

snapshot of an object’s state so that any subsequent changes can be undone easily if

necessary. In .NET the most common implementation is when serializing and de-

serializing objects to save and restore an object’s state.

Essentially, a Memento is a small repository that stores an object’s state. Scenarios in

which you may want to restore an object into a state that existed previously include:

saving and restoring the state of a player in a computer game or the implementation of

an undo operation in a database.

Memento in the .NET Framework

Serialization is the process of converting an object into a linear sequence of bytes for

either storage or transmission to another location. Deserialization is the process of

taking in stored information and recreating objects from it. The Memento pattern creates

a snapshot of an object’s state and then offers the ability to restore it to its original state.

This is what the serialization architecture of .NET offers and therefore qualifies as an

example of Memento in the .NET Framework.

22. Observer

Definition

Define a one-to-many dependency between objects so that when one

object changes state, all its dependents are notified and updated

automatically.

Frequency of use: high

 Design Pattern Framework™ 4.5

Copyright © Data & Object Factory, LLC. All rights reserved. Page 65 of 80

UML Class Diagram

Participants

The classes and/or objects participating in this pattern are:

 Subject (Stock)

o knows its observers. Any number of Observer objects may observe a

subject

o provides an interface for attaching and detaching Observer objects.

 ConcreteSubject (IBM)

o stores state of interest to ConcreteObserver

o sends a notification to its observers when its state changes

 Observer (IInvestor)

o defines an updating interface for objects that should be notified of

changes in a subject.

 ConcreteObserver (Investor)

o maintains a reference to a ConcreteSubject object

o stores state that should stay consistent with the subject's

o implements the Observer updating interface to keep its state consistent

with the subject's

 Design Pattern Framework™ 4.5

Copyright © Data & Object Factory, LLC. All rights reserved. Page 66 of 80

Structural sample code

The structural code demonstrates the Observer pattern in which registered objects are

notified of and updated with a state change

Code in project: DoFactory.GangOfFour.Observer.Structural

Real-world sample code

The real-world code demonstrates the Observer pattern in which registered investors are

notified every time a stock changes value

Code in project: DoFactory.GangOfFour.Observer.RealWorld

.NET optimized sample code

The .NET optimized code demonstrates the same code as above but uses more

modern, built-in .NET features. This example uses .NET multicast delegates which are

an implementation of the Observer pattern. Delegates are type safe function pointers

that have the ability to call a method. Generic delegates allow for event handler-specific

arguments, that is, the argument named sender does not have be of type object, but can

be any type (in this example the type is Stock). Multicast delegates are comprised of

multiple methods that are called serially in the order in which they were added using the

C# += operator.

Code in project: DoFactory.GangOfFour.Observer.NetOptimized

Observer: when and where you would use it

The Observer design pattern is one of two Gang-of-Four design patterns (the other is the

Iterator pattern) that have found their way, not only into the .NET Framework libraries,

but also in the .NET languages themselves. When programming in .NET you often work

with events and event handlers. Events and Delegates, which are first class language

 Design Pattern Framework™ 4.5

Copyright © Data & Object Factory, LLC. All rights reserved. Page 67 of 80

features, act as the Subject and Observers respectively as defined in the Observer

pattern.

The Observer pattern facilitates good object-oriented designs as it promotes loose

coupling. Observers register and unregister themselves with subjects that maintain a list

of interested observers. The subject does not depend on any particular observer, as

long as the delegates are of the correct type for the event. The event and delegate

paradigm in .NET represents an elegant and powerful implementation of the Observer

design pattern.

Observer in the .NET Framework

As mentioned, the .NET event model is implemented with the Observer design pattern

and is found throughout the .NET Framework -- both in the .NET languages and .NET

class libraries.

23. State

Definition

Allow an object to alter its behavior when its internal state changes. The

object will appear to change its class.

Frequency of use: medium

UML Class Diagram

 Design Pattern Framework™ 4.5

Copyright © Data & Object Factory, LLC. All rights reserved. Page 68 of 80

Participants

The classes and/or objects participating in this pattern are:

 Context (Account)

o defines the interface of interest to clients

o maintains an instance of a ConcreteState subclass that defines the

current state.

 State (State)

o defines an interface for encapsulating the behavior associated with a

particular state of the Context.

 Concrete State (RedState, SilverState, GoldState)

o each subclass implements a behavior associated with a state of Context

Structural sample code

The structural code demonstrates the State pattern which allows an object to behave

differently depending on its internal state. The difference in behavior is delegated to

objects that represent this state

Code in project: DoFactory.GangOfFour.State.Structural

Real-world sample code

The real-world code demonstrates the State pattern which allows an Account to behave

differently depending on its balance. The difference in behavior is delegated to State

 Design Pattern Framework™ 4.5

Copyright © Data & Object Factory, LLC. All rights reserved. Page 69 of 80

objects called RedState, SilverState and GoldState. These states represent overdrawn

accounts, starter accounts, and accounts in good standing.

Code in project: DoFactory.GangOfFour.State.RealWorld

.NET optimized sample code

The .NET optimized code demonstrates a Finite State Machine implementation using the

State design pattern. This .NET example is interesting in that it combines two patterns:

the State design pattern and the Singleton pattern resulting in an effective and yet

elegant solution. This example demonstrates a non-deterministic Finite State Machine

with 5 possible states (note: in a non-deterministic system state transitions are

unpredictable).

Code in project: DoFactory.GangOfFour.State.NetOptimized

State: when and where you would use it

The state of an object is represented by the values of its data members. A client can

change the state of an object by making property or method calls which in turn change

the instance data values. These types of objects are called stateful objects. State is

frequently a core concept in complex systems, such as, stock market trading systems,

purchasing and requisition systems, document management systems, and especially

work-flow system.

This complexity may spread to numerous classes and to contain it you use the State

design pattern. In this pattern you encapsulate state specific behavior in a group of

related classes each of which represents a different state. This approach reduces the

need for intricate and hard-to-trace conditional if and case statements relying instead on

polymorphism to implement the correct functionality of a required state transition.

The goal of the State design pattern is to contain state-specific logic in a limited set of

objects in which each object represents a particular state. State transition diagrams

(also called state machines) are very helpful in modeling these complex systems. The

 Design Pattern Framework™ 4.5

Copyright © Data & Object Factory, LLC. All rights reserved. Page 70 of 80

State pattern simplifies programming by distributing the response to a state transition to

a limited set of classes in which each one is a representation of a system’s state.

State in the .NET Framework

We are not aware of the State patterns being exposed in the .NET Framework.

24. Strategy

Definition

Define a family of algorithms, encapsulate each one, and make them

interchangeable. Strategy lets the algorithm vary independently from

clients that use it.

Frequency of use: medium high

UML Class Diagram

Participants

The classes and/or objects participating in this pattern are:

 Strategy (SortStrategy)

o declares an interface common to all supported algorithms. Context uses

this interface to call the algorithm defined by a ConcreteStrategy

 Design Pattern Framework™ 4.5

Copyright © Data & Object Factory, LLC. All rights reserved. Page 71 of 80

 ConcreteStrategy (QuickSort, ShellSort, MergeSort)

o implements the algorithm using the Strategy interface

 Context (SortedList)

o is configured with a ConcreteStrategy object

o maintains a reference to a Strategy object

o may define an interface that lets Strategy access its data.

Structural sample code

The structural code demonstrates the Strategy pattern which encapsulates functionality

in the form of an object. This allows clients to dynamically change algorithmic strategies

Code in project: DoFactory.GangOfFour.Strategy.Structural

Real-world sample code

The real-world code demonstrates the Strategy pattern which encapsulates sorting

algorithms in the form of sorting objects. This allows clients to dynamically change

sorting strategies including Quicksort, Shellsort, and Mergesort.

Code in project: DoFactory.GangOfFour.Strategy.RealWorld

.NET optimized sample code

The .NET optimized code demonstrates the same code as above but uses more

modern, built-in .NET features. In this example the abstract class SortStrategy has been

replaced by the interface ISortStrategy. The setter method SetStrategy has been

implemented as a .NET property. The collection of students is implemented using a

generic List.

Code in project: DoFactory.GangOfFour.Strategy.NetOptimized

 Design Pattern Framework™ 4.5

Copyright © Data & Object Factory, LLC. All rights reserved. Page 72 of 80

Strategy: when and where you would use it

The Strategy design pattern is widely used. Its intent is to encapsulate alternative

strategies for a particular operation. The Strategy pattern is a ‘plug-and-play’ pattern.

The client calls a method on a particular interface which can be swapped out with any

other Strategy class that implements the same interface. Strategy is useful in many

different scenarios. An example is credit card processing. If a customer on an shopping

website prefers to pay with PayPal over Amazon the application can simply swap the

PayPal strategy class out for the Amazon strategy class.

If the Strategy interface has only a single method you can simplify the implementation by

using a delegate rather than an interface. If you think about it, a delegate is a special

case of the Strategy pattern. Therefore, you could argue that .NET’s event model (which

uses delegates as event handlers) is built also on the Strategy pattern.

Strategy in the .NET Framework

An example of the Strategy pattern in .NET is the ArrayList which contains several

overloaded Sort methods. These methods sort the elements in the list using a given

class that implements the IComparer interface. IComparer contains a Sort method that

compares two objects and returns a value indicating whether one object is greater than,

equal to, or less than the other object. Classes that implement the IComparer interface

are implementations of the Strategy design pattern.

 Design Pattern Framework™ 4.5

Copyright © Data & Object Factory, LLC. All rights reserved. Page 73 of 80

25. Template Method

Definition

Define the skeleton of an algorithm in an operation, deferring some steps

to subclasses. Template Method lets subclasses redefine certain steps of

an algorithm without changing the algorithm's structure..

Frequency of use: medium

UML Class Diagram

Participants

The classes and/or objects participating in this pattern are:

 AbstractClass (DataObject)

o defines abstract primitive operations that concrete subclasses define to

implement steps of an algorithm

o implements a template method defining the skeleton of an algorithm. The

template method calls primitive operations as well as operations defined

in AbstractClass or those of other objects.

 ConcreteClass (CustomerDataObject)

o implements the primitive operations ot carry out subclass-specific steps of

the algorithm

 Design Pattern Framework™ 4.5

Copyright © Data & Object Factory, LLC. All rights reserved. Page 74 of 80

Structural sample code

The structural code demonstrates the Template method which provides a skeleton

calling sequence of methods. One or more steps can be deferred to subclasses which

implement these steps without changing the overall calling sequence.

Code in project: DoFactory.GangOfFour.Template.Structural

Real-world sample code

The real-world code demonstrates a Template method named Run() which provides a

skeleton calling sequence of methods. The implementation of these steps is deferred to

the CustomerDataObject subclass which implements the Connect, Select, Process, and

Disconnect methods.

Code in project: DoFactory.GangOfFour.Template.RealWorld

.NET optimized sample code

The .NET optimized example is similar to the RealWorld code as there are no

meaningful .NET optimizations.

The Template pattern is often found in UI programming. A recent example is the Layout

system in WPF. If you need a custom layout in WPF you create a class that derives from

Panel and then you override two methods MeasureOverride() and ArrangeOverride().

This is an elegant example of the Template method pattern.

Code in project: DoFactory.GangOfFour.Template.NetOptimized

Template Method: when and where you would use it

The intent of the Template Method design pattern is to provide an outline of a series of

steps for an algorithm. Derived classes retain the original structure of the algorithm but

 Design Pattern Framework™ 4.5

Copyright © Data & Object Factory, LLC. All rights reserved. Page 75 of 80

have the option to redefine or adjust certain steps of the algorithm. This pattern is

designed to offer extensibility to the client programmer. Template Methods are frequently

used when building a class library (for example an application framework) that is going

to be used by other client programmers. The examples in the .NET Framework (see next

section) demonstrate when and where this pattern can be used.

There are strong similarities between the Template Method and the Strategy pattern.

Both are designed for extensibility and customization as they allow the client to alter the

way an algorithm or process is executed. The difference is that with Strategy the entire

algorithm is changed, whereas the Template method allows individual steps to be

redefined. However, their object-oriented implementations are quite different: Strategy

uses delegation and Template Method is based on object inheritance.

Template Method in the .NET Framework

The Template Method is frequently used in the .NET Framework. It is through this

pattern that .NET provides extensibility to the users of its API. Take a look at custom

controls in ASP.NET. Custom controls are created by inheriting from one of the control

base classes (Control or WebControl).

Out of the box these base classes handle all functionality that are common to all

controls, such as initializing, loading, rendering, unloading, and firing control lifecycle

events at the right time. Your custom control extends the functionality of these base

classes by overriding individual steps in the control generation algorithm, such as the

Render and CreateChildControls methods as well as handling certain events, such as

the Postback event.

The Control class in the System.Windows.Forms namespace demonstrates usage of the

Template Method. These template methods allow the base class designer controlled

extensibility by centralizing these methods as a single virtual method. Microsoft suffixes

these methods with the word “Core”. The Control class for example has methods

named: SetBoundsCore(), ScaleCore(), SetVisibleCore(), and others. Most of these

template methods are protected virtual. The code below shows the inner workings of the

Control class.

 Design Pattern Framework™ 4.5

Copyright © Data & Object Factory, LLC. All rights reserved. Page 76 of 80

// C#

public class Control

{

 // Overloaded SetBounds methods

 public void SetBounds(int x, int y, int width, int height)

 {

 ...

 SetBoundsCore(...);

 }

 public void SetBounds(int x, int y, int width, int height,

 BoundsSpecified specified)

 {

 ...

 SetBoundsCore(...);

 }

 // Template method

 protected virtual void SetBoundsCore(int x, int y,

 int width, int height, BoundsSpecified specified)

 {

 // the real code

 }

}

' VB

Public Class Control

 ' Overloaded SetBounds methods

 Public Sub SetBounds(ByVal x As Integer, ByVal y As Integer, _

 ByVal width As Integer, ByVal height As Integer)

 SetBoundsCore(...)

 End Sub

 Public Sub SetBounds(ByVal x As Integer, ByVal y As Integer, _

 ByVal width As Integer, ByVal height As Integer, _

 ByVal specified As BoundsSpecified)

 ...

 SetBoundsCore(...)

 End Sub

 ' Template method

 Protected Overridable Sub SetBoundsCore(ByVal x As Integer, _

 ByVal y As Integer, ByVal width As Integer, _

 ByVal height As Integer, ByVal specified As BoundsSpecified)

 ' the real code

 End Sub

End Class

 Design Pattern Framework™ 4.5

Copyright © Data & Object Factory, LLC. All rights reserved. Page 77 of 80

26. Visitor

Definition

Represent an operation to be performed on the elements of an object

structure. Visitor lets you define a new operation without changing the

classes of the elements on which it operates.

Frequency of use: low

UML Class Diagram

 Design Pattern Framework™ 4.5

Copyright © Data & Object Factory, LLC. All rights reserved. Page 78 of 80

Participants

The classes and/or objects participating in this pattern are:

 Visitor (Visitor)

o declares a Visit operation for each class of ConcreteElement in the object

structure. The operation's name and signature identifies the class that

sends the Visit request to the visitor. That lets the visitor determine the

concrete class of the element being visited. Then the visitor can access

the elements directly through its particular interface

 ConcreteVisitor (IncomeVisitor, VacationVisitor)

o implements each operation declared by Visitor. Each operation

implements a fragment of the algorithm defined for the corresponding

class or object in the structure. ConcreteVisitor provides the context for

the algorithm and stores its local state. This state often accumulates

results during the traversal of the structure.

 Element (Element)

o defines an Accept operation that takes a visitor as an argument.

 ConcreteElement (Employee)

o implements an Accept operation that takes a visitor as an argument

 ObjectStructure (Employees)

o can enumerate its elements

o may provide a high-level interface to allow the visitor to visit its elements

o may either be a Composite (pattern) or a collection such as a list or a set

Structural sample code

The structural code demonstrates the Visitor pattern in which an object traverses an

object structure and performs the same operation on each node in this structure.

Different visitor objects define different operations.

Code in project: DoFactory.GangOfFour.Visitor.Structural

 Design Pattern Framework™ 4.5

Copyright © Data & Object Factory, LLC. All rights reserved. Page 79 of 80

Real-world sample code

The real-world code demonstrates the Visitor pattern in which two objects traverse a list

of Employees and performs the same operation on each Employee. The two visitor

objects define different operations -- one adjusts vacation days and the other income.

Code in project: DoFactory.GangOfFour.Visitor.RealWorld

.NET optimized sample code

The .NET optimized code demonstrates the same code as above but uses more

modern, built-in .NET features. In this example the Visitor pattern uses reflection. This

approach lets us selectively choose which Employee we'd like to visit. ReflectiveVisit()

looks for a Visit() method with a compatible parameter. Note that the use of reflection

makes the Visitor pattern more flexible but also slower and more complex. This sample

holds the collection of employees in a generic class List<Employee> (List(Of Employee)

in VB). .NET features in this example includes the Foreach extension method in the

Employees class.

Code in project: DoFactory.GangOfFour.Visitor.NetOptimized

Visitor: when and where you would use it

You may find yourself in a situation where you need to make a functional change to a

collection of classes but you do not have control over the classes in the hierarchy. This

is where the Visitor pattern comes in. The intent of the Visitor design pattern is to define

a new operation for a collection of classes (i.e. the classes being visited) without

changing the hierarchy itself.

The new logic lives in a separate class, the Visitor. The tricky aspect of the Visitor

pattern is that the original developer of the classes in the collection must have

anticipated functional adjustments that may occur in the future by including methods that

accept a Visitor class and let it define new operations.

 Design Pattern Framework™ 4.5

Copyright © Data & Object Factory, LLC. All rights reserved. Page 80 of 80

Visitor is a somewhat controversial pattern and expert .NET developers avoid using it.

They argue that it adds complexity and creates fragile code that goes against generally

accepted best practices in object-oriented design. When deciding to use this pattern it is

usually best to carefully weight it against alternative approaches, such as inheritance or

delegation, which most likely will offer a more robust solution to your problem.

Visitor in .NET Framework

The Visitor pattern is not used in the .NET Framework libraries.

